新闻资讯

电子设备测试是干啥的

电子测试工程师应掌握的技能

电子测试工程师应掌握的技能:

熟悉电子产品相关测试标准(IEC/GB);了解计算机系统、计算机控制测试及数据采集系统,精通数字电路、模拟电路、单片机,有扎实的数字电路、模拟电路基础知识,熟悉各种电子元器件、PCB板的使用方法及测试手段,并有独立的开发或测试经验;熟悉产品测试流程,熟练运用测试工具和仪器。

电子测试工程师就是AG体育登录根据相关的电子设备测试标准和电子产品测试方案,安排电子测试设备进行相关测试并提交测试报告的专业技术人员。

工作内容

制订电子测试设备的测试标准;

与供应商合作开发和安排电子测试设备;

进行电子产品测试方案的制定和完善;

进行电子测试设备和实验室的建设;

协调与管理电子测试及测试计划并进行电子测试工作任务分配;

编写完善电子产品测试所有相关文件及操作指导书;

完成相关的电子测试报告 。

关于电子测试

1.频谱分析仪的使用

1.1 频谱分析仪的原理

频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。

图1 频谱分析仪的原理框图

频谱分析仪采用频率扫描超外差的工作方式。混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。

根据这个频谱,就能够知道被测设备是否有超过标准规定的干扰发射,或产生干扰的信号频率是多少。

1.2 频谱分析仪的使用方法

要获得正确的测量结果,必须正确地操作频谱分析仪。本节简单介绍频谱分析仪的使用方法。正确使用频谱分析仪的关键是正确设置频谱分析仪的各个参数。下面解释频谱分析仪中主要参数的意义和设置方法。

频率扫描范围:

规定了频谱分析仪扫描频率的上限和下限。通过调整扫描频率范围,可以对感兴趣的频率进行细致的观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start frequency = 1MHz, stop frequency = 11MHz。也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency = 6MHz, span = 10MHz。这两种设置的结果是一样的。

中频分辨带宽:

规定了频谱分析仪的中频带宽,这项指标决定了仪器的选择性和扫描时间。调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别。另一个目的是提高仪器的灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。

分辨带宽一般以3dB带宽来表示。当分辨带宽变化时,屏幕上显示的信号幅度可能会发变化。若测量信号的带宽大于通频带带宽,则当带宽增加时,由于通过中频放大器的信号总能量增加,显示幅度会有所增加。若测量信号的带宽小于通频带宽,如对于单根谱线的信号,则不管分辨带宽怎样变化,显示信号的幅度都不会发生变化。 信号带宽超过中频带宽的信号称为宽带信号,信号带宽小于中频带宽的信号称为窄带信号。根据信号是宽带信号还是窄带信号能够有效地定位干扰源。

扫描时间:

仪器接收的信号从扫描频率范围的最低端扫描到最高端所使用的时间叫做扫描时间。扫描时间与扫描频率范围是相匹配的。如果扫描时间过短,测量到的信号幅度比实际的信号幅度要小。

视频带宽:

视频带宽的作用与中频带宽相同,可以减小仪器本身的带内噪声,从而提高仪器对微弱信号的检测能力。

2.用频谱分析仪分析干扰的来源

2.1 根据干扰信号的频率确定干扰源

在解决电磁干扰问题时,最重要的一个问题是判断干扰的来源,只有准确将干扰源定位后,才能够提出解决干扰的措施。根据信号的频率来确定干扰源是最简单的方法,因为在信号的所有特征中,频率特征是最稳定的,并且电路设计人员往往对电路中各个部位的信号频率都十分清楚。因此,只要知道了干扰信号的频率,就能够推测出干扰是哪个部位产生的。

对于电磁干扰信号,由于其幅度往往远小于正常工作信号,因此用示波器很难测量到干扰信号的频率。特别是当较小的干扰信号叠加在较大的工作信号上时,示波器无法与干扰信号同步,因此不可能得到准确的干扰信号频率。

而用频谱分析仪做这种测量是十分简单的。由于频谱分析仪的中频带宽较窄,因此能够将与干扰信号频率不同的信号滤除掉,精确地测量出干扰信号频率,从而判断产生干扰信号的电路。

2.2 根据干扰信号的带宽确定干扰源

判断干扰信号的带宽也是判断干扰源的有效方法。例如,在一个宽带源的发射中可能存在一个单个高强度信号,如果能够判断这个高强度信号是窄带信号,则它不可能是从宽带发射源产生的。干扰源可能是电源中的振荡器,或工作不稳定的电路,或谐振电路。当在仪器的通频带中只有一根谱线时,就可以断定这个信号是窄带信号。

根据傅立叶变换,单根的谱线所对应的信号是周期信号。因此,当遇到单根谱线时,就要将注意力集中到电路中的周期信号电路上。

3.用近场测试方法确定辐射源

除了上述的根据信号特征判断干扰源的方法以外,在近场区查找辐射源可以直接发现干扰源。在近场区查找辐射源的工具有近场探头和电流卡钳。检查电缆上的发射源要使用电流卡钳,检查机箱缝隙的泄漏要使用近场探头。

3.1 电流卡钳与近场探头

电流探头是利用变压器原理制造的能够检测导线上电流的传感器。当电流探头卡在被测导线上时,导线相当于变压器的初级,探头中的线圈相当于变压器的次级。导线上的信号电流在电流探头的线圈上感应出电流,在仪器的输入端产生电压。于是频谱分析仪的屏幕上就可以看到干扰信号的频谱。仪器上读到的电压值与导线中的电流值通过传输阻抗换算。传输阻抗定义为:仪器50? 输入阻抗上感应的电压与导线中的电流之比。对于一个具体的探头,可以从厂家提供的探头说明书中查到它的转移阻抗ZT。因此,导线中的电流等于:

I = V / ZT

如果公式中的所有物理量都用dB表示,则直接相减。

对于机箱的泄漏,要用近场探头进行探测。近场探头可以看成是很小的环形天线。由于它很小,因此灵敏度很低,仅能对近场的辐射源进行探测。这样有利于对辐射源进行精确定位。由于近场探头的灵敏度较低,因此在使用时要与前置放大器配套使用。

3.2 用电流卡钳检测共模电流

设备产生辐射的主要原因之一是电缆上有共模电流。因此当设备或系统有超标发射时,首先应该怀疑的就是设备上外拖的各种电缆。这些电缆包括电源线电缆和设备之间的互连电缆。

将电流探头卡在电缆上,这时由于探头同时卡住了信号线和回流线,因此差模电流不会感应出电压,仪器上读出的电压仅代表共模电流。

测量共模电流时,最好在屏蔽室中进行。如果不在屏蔽室中,周围环境中的电磁场会在电缆上感应出电流,造成误判断。因此应首先将设备的电源断开,在设备没有加电的状态下测量电缆上的背景电流,并记录下来,以便与设备加电后测量的结果进行比较,排除背景的影响。

如果在用天线进行测量时将频谱分析仪的扫描频率局限感兴趣的频率周围很小的范围内,则可以排除环境中的干扰。

3.3 用近场探头检测机箱的泄漏

如果设备上外拖电缆上没有较强的共模电流,就要检查设备机箱上是否有电磁泄漏。检查机箱泄漏的工具是近场探头。将近场探头靠近机箱上的接缝和开口处,观察频谱分析仪上是否有感兴趣的信号出现。一般由于探头的灵敏度较低,即使用了放大器,很弱的信号在探头中感应的电压也很低,因此在测量时要将频谱分析仪的灵敏度调得尽量高。根据前面的讨论,减小频谱分析仪的分辨带宽能够提高仪器的灵敏度。但是要注意的是,当分辨带宽很窄时,扫描时间会变得很长。为了缩短扫描时间,提高检测效率,应该使频谱分析仪的扫描频率范围尽量小。因此一般在用近场探头检测机箱泄漏时,都是首先用天线测出泄漏信号的精确频率,然后使仪器用尽量小的扫描频率范围覆盖住这个干扰频率。这样做的另一个好处是不会将背景干扰误判为泄漏信号。

对于机箱而言,靠近滤波器安装位置的缝隙是最容易产生电磁泄漏的。因为滤波器将信号线上的干扰信号旁路到机箱上,在机箱上形成较强的干扰电流,这些电流流过缝隙时,就会在缝隙处产生电磁泄漏。

4.容易犯的错误

当设备不能满足有关的电磁兼容标准时,就要对设备产生超标发射的原因进行调查,然后进行排除。在这个过程中,经常发现许多人经过长时间的努力,仍然没有排除故障。造成这种情况的原因是诊断工作陷入了“死循环”。这种情况可以用下面的例子说明。

假设一个系统在测试时出现了超标发射,使系统不能满足电磁兼容标准中对电磁辐射的限制。经过初步调查,原因可能有4个,它们分别是:

主机与键盘之间的互连电缆(电缆1)上的共模电流产生的辐射

主机与打印机之间的互连电缆(电缆2)上的共模电流产生的辐射

机箱面板与机箱基体之间的缝隙(开口1)产生的泄漏

某显示窗口(开口2)产生泄漏

在诊断时,首先在电缆1上套一个铁氧体磁环,以减小共模辐射,结果发现频谱仪屏幕上显示的信号并没有明显减小。于是试验人员认为电缆1不是一个主要的泄漏源,将铁氧体磁环取下,套在电缆2上,结果发现频谱仪屏幕上显示的信号还没有明显减小。结果试验人员得出结论,电缆不是泄漏源。

于是再对机箱上的泄漏进行检查。用屏蔽胶带将开口1堵上,发现频谱仪屏幕上显示的信号没有明显减小。试验人员认为开口1不是主要泄漏源,将屏蔽胶带取下,堵到开口2上。结果频谱仪上的显示信号还没有减小。试验人员一筹莫展。之所以会发生这个问题,是因为试验人员忽视了频谱分析仪上显示的信号幅度是以dB为单位显示的。下面我们看一下为什么会有这种现象。

假设这4个泄漏源所占的成分各占1/4,并且在每个辐射源上采取的措施能够将这个辐射源完全抑制掉。则我们采取以上4个措施中的一个时,频谱仪上显示信号降低的幅度ΔA为:

ΔA = 20 lg ( 4 / 3 ) = 2.5 dB

幅度减小这么少,显然是微不足道的。但这却已经将泄漏减少了25%。

正确的方法是,当对一个可能的泄漏源采取了抑制措施后,即使没有明显的改善,也不要将这个措施去掉,继续对可能的泄漏源采取措施。当采取到某个措施时,如果干扰幅度降低很多,并不一定说明这个泄漏源是主要的,而仅说明这个干扰源是最后一个。按照这个步骤对4个泄漏源逐个处理的结果如图1所示。

在前面的叙述中,我们假定对某个泄漏源采取措施后,这个泄漏源被100%消除掉,如果这样,当最后一个泄漏源去掉后,电磁干扰的减小应为无限大。实际这是不可能的。我们在采取任何一个措施时,都不可能将干扰源100%消除。泄漏源去掉的程度可以是99% ,或99.9% ,甚至99.99以上,而决不可能是100% !所以当最后一个泄漏源去掉后,尽管改善很大,但仍是有限值。

当设备完全符合有关的规定后,如果为了降低产品成本,减少不必要的器件,可以将采取的措施逐个去掉。首先应该考虑去掉的是成本较高器件/材料,或在正式产品上难于实现的措施。如果去掉后,产品的电磁发射并没有超标,就可以去掉这个措施。通过试验,使产品成本降到最低。

图 2 抑制4个泄漏源时干扰幅度的变化

5.产品电磁兼容测试诊断步骤

图3给出了一个设备或系统的电磁干扰发射与故障分析步骤,按照这个步骤进行可以提高测试诊断的效率。

图3 电磁兼容测试诊断步骤

关于图3的说明如下:

电磁兼容测试一般首先测量干扰发射,因为干扰发射的试验费用一般比敏感度试验费用低。另外当设备的干扰发射能够满足要求时,往往敏感度也不会有大的问题。因为几乎所有的解决干扰发射的措施同样对改善敏感度有效。

测量干扰发射时要先测量传导发射,不仅要在标准规定的频率范围内测量,还要对更高的频率进行摸底测量。当电源线上有较强的干扰电流时,要先解决这个问题。因为这些传导干扰电流会借助导线的天线作用产生辐射,导致辐射发射不合格。

当传导发射完全合格后,再进行辐射发射测试。对于辐射发射不合格的频率,要记录下精确频率,便于在用近场探头查找问题时,将频谱分析仪的扫描范围设置在干扰频率附近。

谁能告诉我硬件测试工程师是干什么的

主要是对电子系统的可靠性、抗震性、耐老化、安全性的方面的检测。最简单的就是按照验收标准对各项功能进行测试,再深入一点就是要模拟各种特殊环境去检验产品的各种抗性,如极端温度、爆炸、强干扰等,硬件测试有很多时候不是因为你能力问题不能测试,而是需要的仪器相当昂贵

什么是电子测量?

电子测量

1.广义的电子测量是指利用电子技术进行的测量。

非电量的测量属于广义电子测量的内容,可以通过传感器将非电量变换为电量后进行测量。

2.狭义的电子测量是指对电子技术中各种电参量所进行的测量。

狭义电子测量的内容主要包括:

(1)能量的测量

能量的测量指的是对电流、电压、功率、电场强度等参量的测量。

(2)电路参数的测量

电路参数的测量指的是对电阻、电感、电容、阻抗、品质因数、损耗率等参量的测量。

(3)信号特性的测量

信号特性的测量指的是对频率、周期、时间、相位、调制系数、失真度等参量的测量。

(4)电子设备性能的测量

电子设备性能的测量指的是对通频带、选择性、放大倍数、衰减量、灵敏度、信噪比等参量的测量。

(5)特性曲线的测量

特性曲线的测量指的是对幅频特性、相频特性、器件特性等特性曲线的测量。

上述各种参量中,频率、时间、电压、相位、阻抗等是基本参量,其他的为派生参量,基本参量的测量是派生参量测量的基础。电压测量是最基本、最重要的测量内容。

电子检验员是做什么的

电子检验员,也是检验员的一种,其主要工作内容就是检验本厂生产的成品是否合格、符合质量要求,是产品出厂的最后一道关。其具体工作职责如下:

1. 参与维护、监督质量体系的运行、组织和管理内部质量审核工作;

2. 根据质量主管的检验计划完成当日工作任务;

3. 按作业指导书及相应流程对待检备件进行检验、清理,检验前以及检验过程中认真核对物料编码、名称,填写检验记录,并提交质量主管;

4. 汇总、存档各项质检记录及相关资料;

5. 监控项目现场质检工作的具体实施情况,包括人员组织、技术实施、质量、进度、安全、成品保护等;

6. 及时上报批量质量问题;

7. 协助质量主管完成其他质量管理体系方面的工作。

游戏公司的游戏测试一般都干些什么啊?

全职游戏测试员—偏执狂一族

几乎一天有14小时混在公司,测试员零距离算是工作狂人,但他却觉得自己的青春期延长了,并且从这份工作中,找到了乐趣。当然,游戏测试毕竟是很特殊的工作,大多数从事测试员工作的在旁人看来都是狂人,而不大愿意和他们打交道。这些工作狂人只能从自己的工作中挖掘乐趣,这就是所谓爱我所选。只要沉浸其中,也不难发现自有一番天地,乐在其中,当然也能赚到钱。他们都把英特尔总裁葛罗夫的一句话奉为测试员的准则:只有偏执狂才能存活。

作为专业的测试员,零距离认为游戏测试和一般的产品测试是完全不同的两个概念。就拿与游戏软件最接近的电子设备的测试以及商务软件测试作比较:一,检测设备方面,电子设备测试使用设备十分广泛,数不胜数,商务软件测试设备主要是PC、服务器、网络设备,而游戏使用的测试设备就是PC,如果是网络游戏则加上服务器、支持游戏杆即可;二,测试人员组成,电子设备测试人员构成单一,以电子工程师为主,商务软件测试团队则主要由程序员和领域专家构成,少有美工,而游戏测试则必须拥有程序、美术、策划等涉及游戏制作领域几乎全部工种;三,用户满意度,电子设备各项指标都很明确,用户满意度几乎可以依据从机械指标来衡量(如信噪比什么的),而商务软件和游戏软件在这方面,衡量标准都非常含糊和主观,带有极强的不可预测性。

游戏需要专业的测试者

正因为游戏测试的难度比大多数产品测试高出许多,因此零距离所在的网络游戏公司对测试过程有着严格的标准化程序化的规定。不仅仅是兼职游戏测试员以为的那样,找找BUG那么简单。

以零距离为例,作为测试小组组长,他的活动贯穿了整个测试全过程。

第一步要作出全面的测试计划,这是个很花时间的过程,认真的测试员必须要对游戏产品有全盘了解,并制定完整正确的企划书,这份企划书要准确描述测试结束后游戏的所能达到的品质。据此作出测试时间和人力安排方案。

第二步是实施阶段,这一阶段的目标是“确保其功能的正确性,在指定环境下运行的正确性”,这在测试中有个两个专用术语指代:功能测试与压力测试。功能测试即检验游戏是否能实现所有设计功能。测试功能可分为:游戏画面、NPC对话、物品的穿戴摘取带来的数据变化、升级带来的数据变化、各个频道的聊天是否正常、任务的完成过程和结果,技能的使用等等。压力测试的项目则主要有职业平衡性、某一场景中能够承载的人数、不同场景间承载的不同级别人物、怪物的刷新率、同场景内不同怪物的搭配等等。此外还要依照游戏中的语音、对话表,来检查错别字,这被测试员看成是最枯燥也最漫长的检查。

第三步被称作回归测试,准确来说并非一个测试步骤,只是用于保障对BUG的修改不会引入新的BUG,所以简单的讲就是对修改后的版本重新进行一次完整的测试过程,重新验证每个细节,然后将测试过程中的信息收集整理,供下个游戏制作和测试借鉴。

也许正因为专业游戏测试有如此难度,在这些全职游戏测试员眼中,象小比和童辉那类兼职测试员一直没有什么地位。有部分全职测试员甚至偏激的认为:“吸收玩家参与游戏测试是个公司决策中的错误,他们除了给公司带来更高的市场风险外,别的什么作用都没有。”

留言评论

◎欢迎您留言咨询,请在这里提交您想咨询的内容。